Learning from Crowds by Modeling Common Confusions
نویسندگان
چکیده
Crowdsourcing provides a practical way to obtain large amounts of labeled data at low cost. However, the annotation quality annotators varies considerably, which imposes new challenges in learning high-quality model from crowdsourced annotations. In this work, we provide perspective decompose noise into common and individual differentiate source confusion based on instance difficulty annotator expertise per-instance-annotator basis. We realize crowdsourcing by an end-to-end solution with two types adaptation layers: one is shared across capture their commonly confusions, other pertaining each confusion. To recognize annotation, use auxiliary network choose layers respect both instances annotators. Extensive experiments synthesized real-world benchmarks demonstrate effectiveness our proposed solution.
منابع مشابه
Active Learning from Crowds
Obtaining labels can be expensive or timeconsuming, but unlabeled data is often abundant and easier to obtain. Most learning tasks can be made more efficient, in terms of labeling cost, by intelligently choosing specific unlabeled instances to be labeled by an oracle. The general problem of optimally choosing these instances is known as active learning. As it is usually set in the context of su...
متن کاملLearning From Crowds
For many supervised learning tasks it may be infeasible (or very expensive) to obtain objective and reliable labels. Instead, we can collect subjective (possibly noisy) labels from multiple experts or annotators. In practice, there is a substantial amount of disagreement among the annotators, and hence it is of great practical interest to address conventional supervised learning problems in thi...
متن کاملDeep learning from crowds
Over the last few years, deep learning has revolutionized the field of machine learning by dramatically improving the state-of-the-art in various domains. However, as the size of supervised artificial neural networks grows, typically so does the need for larger labeled datasets. Recently, crowdsourcing has established itself as an efficient and cost-effective solution for labeling large sets of...
متن کاملLearning from Crowds and Experts
Crowdsourcing services are often used to collect a large amount of labeled data for machine learning. Although they provide us an easy way to get labels at very low cost in a short period, they have serious limitations. One of them is the variable quality of the crowd-generated data. There have been many attempts to increase the reliability of crowd-generated data and the quality of classifiers...
متن کاملLearning from the Wisdom of Crowds by Minimax Entropy
An important way to make large training sets is to gather noisy labels from crowds of nonexperts. We propose a minimax entropy principle to improve the quality of these labels. Our method assumes that labels are generated by a probability distribution over workers, items, and labels. By maximizing the entropy of this distribution, the method naturally infers item confusability and worker expert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the ... AAAI Conference on Artificial Intelligence
سال: 2021
ISSN: ['2159-5399', '2374-3468']
DOI: https://doi.org/10.1609/aaai.v35i7.16730